Isolation and sequence determination of cDNA encoding P2 protein of human peripheral myelin*

Kiyoshi Hayasaka¹, Kenji Nanao¹, Marie Tahara¹, Wataru Sato¹, Goro Takada¹, Masayuki Miura² and Keiichi Uyemura²

- Department of Pediatrics, Akita University School of Medicine, Akita, Japan
- ² Department of Physiology, Keio University School of Medicine, Tokyo, Japan

Received October 12, 1991

Summary: A full length cDNA of P2 protein of peripheral myelin has been isolated from a cDNA library of human fetus spinal cord. The clone is 2150 base pairs (bp) in length and contains a 393 bp open reading frame encoding a polypeptide of 131 residues. The deduced amino acid sequence is highly homologous to P2 protein from other species.

© 1991 Academic Press, Inc.

Myelin is a multilamellar compacted membrane structure that surrounds and insulates the axon, facilitating the conduction of nerve impulses. Schwann cells are responsible for myelin formation in the peripheral nerve. The P2 protein is a small basic protein found in peripheral myelin. The primary structure of P2 protein has been directly determined by protein sequencing(1,2,3). Its amino acid sequence is similar to a family of fatty acid binding proteins(4) and bovine P2 protein is shown to have lipid binding activities(5). Myelin is composed of more lipids(70 %) and less proteins(30 %). With this lipid binding activities, P2 protein may have some important role in the organization of compact myelin. The cDNA has been isolated from rabbit(4) and genomic structure has been determined in mouse(6). The cDNA encoding human P2 protein has not been isolated; its information is necessary for the

^{*}The sequence data in this paper have been submitted to the EMBL Data Library under the accession number X62167.

study of genetic disorders. In the present study we report the isolation of a cDNA encoding the entire human P2 protein from human fetus spinal cord library.

Materials and Methods

Materials Restriction nucleases and DNA-modifying enzymes were purchased from Takara Shuzo (Kyoto, Japan). Radiolabeled nucleotides were obtained from New England Nuclear (Boston, MA). Oligonucleotide primers were synthesized on an Applied Biosystems 381A DNA synthesizer.

Screening of cDNA Library A lambda gt11 library from human fetus spinal cord(7) was screened with a radiolabelled cDNA of rabbit P2 protein(4). Filters were hybridized with 52 P-labelled probe overnight at 65°C in 6X SSC containing 5X Denhardt's solution, 10 % dextran sulfate, 10 mM EDTA, 0.5 % SDS, and 100 µg/ml salmon sperm DNA. They were then washed at room temperature in 2X SSC containing 0.1 % SDS, followed by washing for 30 min at 65°C in 2X SSC containing 0.1 % SDS, and exposed to X-ray film. Twenty two positive clones were isolated from 1 x 10^6 plaques. Three of them were more than 2000 bp long.

DNA Sequencing DNA inserts liberated by digestion with EcoRI were isolated, purified and subcloned in pUC 19 using standard procedures. Nucleotide sequences were determined by the dideoxy method(8). The nucleotide sequences, the deduced primary structures and homologies were analyzed using a computer program, DNASIS(Hitachi Software Engineering Co., Ltd.).

Results and Discussion

Of the three clones that were isolated, one was 2200 bp long and the other two were 2100 and 2000 bp. The 2200 bp clone, A2h, was fully sequenced and shown in Fig. 1; the other two clones were partially sequenced and these sequences were found to be present within the fully sequenced clone except ⁷⁶C to T. Clone A2h is 2150 bp in length and has a 393 bp open reading frame encoding a polypeptide of 131 residues and 5 bp of the poly(A) tail at the 3' end. The nucleotide sequence of the human P2 protein is 59 % identical to that of rabbit P2 protein(4). The deduced amino acid sequence coincides with the sequence determined directly by protein sequencing except for ⁹⁸Asp to Asn and ¹¹⁰Asn to Asp. The change in the nucleotide ⁷⁶C to T dose not change the amino acid and seems to be polymorphism. The amino acid sequence shows 95 % homology to rabbit(1) and 87 % to mouse P2 protein(6) (Fig.2). P2 protein may be important to make a compact myelin sheath in the peripheral nerve together with other proteins like P0 protein. The few interspecies amino acid variations indicate a quite conservative evolution of the P2 protein.

1 1	С	GCT	TAG	AAC	TGT	GTT	GAG	CTC	TCA	CCC	ATC	ACG	АТG		AAC Asn		46 3
47 4						AAA Lys											94 19
95 20						GTG Val											142 35
143 36						ATC Ile											190 51
191 52	Arg	Thr	Glu	Ser	Thr	TTT Phe	Lys	Asn	Thr	G1u	Ile	Ser	Phe	Lys	Leu	Gly	238 67
239 68						ACC Thr											286 83
287 84	Val	Thr	Leu	Gln	Arg	GGA Gly	Ser	Leu	Asn	Gln	Val	Gln	Arg	Trp	Asp	Gly	334 99
335 100	Lys	Glu	Thr	Thr	Ile	AAG Lys	Arg	Lys	Leu	Val	Asn	Gly	Lys	Met	Val	Ala	382 115
383 116	Glu	Cys	Lys	Met	Lys	GGC Gly	Val	Val	Cys	Thr	Arg	lle	Tyr	Glu	Lys	Val	430 131
431 132	***					TCA											478 132
479 527						ATT AAT											526 574
575	ATT	ААТ	CTA	$A\Lambda A$	GTC	AGT	GTT	ATT	$T\Lambda\Lambda$	ACA	TTT	TCA	ATG	TGC	ATG	CAT	622
623						AAG											670
671						AAC											718
719 767						ATA GGG											766
815						GAG											814 862
863	GCT	ATT	ATA	ATG	TAA	ΛGΛ	ATT	GTA	GTC	TCA	GTT	ΛΑΛ	AGG	GGT	AGC	CTC	910
911	TAC	TCC	AGC	CAA	CAT	TTT	AAA	ATT	ΛAT	GGA	TAA	TTT	ATA	GAC	AGT	TAA	958
959						AGT											1006
1007	AΤA	GAC	AGG	ΤΑΛ	ATG	TGA	GTT	AAA	TAT	AAC	TCA	CAT	CCC	ACT	CAA	GAC	1054
1055	ACA	AAA	CAT	TTT	CTT	AAT	CCT	AGT	ACA	TTT	TTT	TCT	GTC	CCT	TCC		1102
1103						GTT											1150
1151 1199						ATT											1198 1246
1247						ACA											1294
1295						ATT											1342
1343						AAT											1390
1391						ATA											1438
$\frac{1439}{1487}$						AAT											1486
1535						GAA GAT											1534 1582
1583						GAG											1630
1631						GGG											1678
1679	TAG	AΛT	TGG	TAT	ΑΑΛ	TTC	ATA	ATT	TCT	AAA	CCA	TGT	ATA	TGT	ACG	TTT	1726
1727						GCA											1774
1775						TTA											1822
1823						CCA											1870
$1871 \\ 1919$						AGC AGG											1918 1966
1967						CAA											2014
2015						AAA											2062
2063	CCA	GCT	TGA	AGG	GGC	TCC	CAC	TGG	CCA	AAC	TTG	AGC	CAA	TCT			2110
2111	AAA	ATA	ATT	GAG	ΑΛΛ	AAT	ΑΛΑ	TAA	CAA	GAT	AAT	TGA	AAA	A			2150

Fig.1.

Nucleotide and deduced amino acid sequences for human P2 protein. Polyadenylation signals are underlined.

HUMAN RABBIT MOUSE	SNKFLGTWKLVSSENFDDYMKALGVGLATRKLGNLAKPTVIISKKGDIIT1RTESTFKNT	60
HUMAN RABBIT MOUSE	EISFKLGQEFEETTADNRKTKSIVTLQRGSLNQVQRWDGKETTIKRKLVNGKMVAECKMK	120
HUMAN RABBIT MOUSE	GVVCTRIYEKV 	131

Fig.2.

Comparison of the deduced amino acid sequence of the P2 proteins from human, rabbit and mouse.

Acknowledgments

We thank Dr. A. T. Campagnoni for a lambda gt11 library from human fetus spinal cord, Dr. G. I. Tennekoon for a cDNA of rabbit P2 protein and Dr. T. Nakagomi for synthesizing the oligonucleotides.

References

- 1. Ishaque, A., Hoffman, T. and Eylar, E.H. (1982) J. Biol. Chem. 257, 592-595.
- 2. Kitamura, K., Suzuki, M., Suzuki, A. and Uyemura, K. (1980) FEBS Lett. 115, 27-60.
- 3. Suzuki, M., Kitamua, K., Sakamoto, Y., and Uyemura, K. (1982) J. Neurochem. 39, 1759-1762.
- Narayanan, V., Barbosa, E., Reed, R., and Tennekoon, G. (1988) J. Biol. Chem. 263, 8332–8337.
- 5. Uyemura K., Yoshimura, K., Suzuki, M. and Kitamura, K. (1984) Neurochem. Res. 9, 1509-1514.
- 6. Narayanan, V., Kaestner, K.H., and Tennekoon, G.I. (1991) J. Neurochem. 57, 75-80.
- 7. Roth, H. J., Kronquist, K., Pretorius, P. J., Crandall, B. F. and Campagnoni, A. T. (1986) J. Neurosci. Res. 16, 227-238.
- Sanger, F., Nicklen, S., and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463– 5467.